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INTRODUCTION

The Nature of Numbers

The question “What is the nature of a mathematical entity?”
is one which has interested thinkers for over two thousand years
and has proved to be very difficult to answer. Even the first and
foremost of these entities, the natural number, has the elusiveness
of a will-of-the-wisp when we try to define it.

One of the sources of the difficulty in saying what numbers are
is that there is nothing to which we can point in the world around
us when we are looking for a definition of number. The number
seven, for instance, is not any particular collection of seven objects,
since if it were, then no other collection could be said to have seven
members; for if we identify the property of being seven with the
property of being a particular collection, then being seven is a
property which no other collection can have. A more reasonable
attempt at defining the number seven would be to say that the
property of being seven is the property which all collections of
seven objects have in common. The difficulty about this definition,
however, it to say just what it is that all collections of seven
objects really do have in common (even if we pretend that we can
ever become acquainted with all collections of seven objects).
(Certainly the number of a collection is not a property of it in the
sense that the colour of a door is a property of the door, for we
can change the colour of a door but we cannot change the number
of a collection without changing the collection itself. It makes
perfectly good sense to say that a door which was formerly red,
and is now green, is the same door, but it is nonsense to say of
some collection of seven beads that it is the same collection as a
collection of eight beads. If the number of a collection is a property
of a collection then it is & defining property of the collection, an
essential characteristic.

This, however, brings us no nearer to an answer to our question
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“Whabt is it that all collections of seven objects have in common?#”
A good way of making progress with a question of this kind is to
ask ourselves “How do we know that a collection has seven
members?” because the answer to this question should certainly
bring to light something which collections of seven objects share
in common. An obvious answer is that we find out the number of
a collection by counting the collection but this answer does not
seem to help us because, when we count a collection, we appear to
do no more than ‘label’ each member of the collection with a
number. (Think of a line of soldiers numbering off.) It clearly does
not provide a definition of number to say that number is & property
of a collection which is found by assigning numbers to the members

of the collection.

The Frege-Russell Definition
To label each member of a collection with a number, as we seem
to do in counting, is in effect to set up a correspondence between
the members of two collections, the objects to be counted and the
natural numbers. In counting, for example, a collection of seven
objects, we set up a correspondence between the objects counted
and the numbers from one to seven. Each object is assigned a
unique number and each number (from one to seven) is assigned
to some object of the collection. If we say that two collections are
similar when each has a unique associate in the other, then counting
a collection may be said to determine a collection of numbers
gimilar to the collection counted. Since similarity is a transitive
property, that is to say, two collections are similar if each of them
is similar to a third, it follows that in similarity we may have
found the property, common to all collections of the same number,
for which we have been looking, and since similarity itself is
defined without reference to number it is certainly eligible to serve
in a definition of number. To complete the definition we need only
to specify certain standard collections of numbers one, two, three,
and so on; a collection is then said to have a certain number only
if it is similar to the standard collection of that number. The
numbers themselves may be made to provide the required standards
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in the following way. We define the property of being an empt
collection as the property of not being identical with oneself aﬁl(}ir
then the number zero is defined as the property of being simil’ar to
the empty collection. Next we define the standard unit collection
as the collection whose only member is the number zero, and the
number one is defined as the property of being similar to the unit
collection. Then the standard pair is taken to be the collection
whosf,e members are the numbers zero and unity and the number
two is defined as the property of being similar to the standard paibr
apd so on. This is, in effect, the definition of number which Wa;
discovered by Frege in 1884 and, independently, by Russell in
1904. It cannot, however, be accepted as a complete answer to the
problem of the nature of numbers. According to the definition
number is a similarity relation between collections in which eacli
element of one collection is made to correspond to a certain element
of .the other, and vice-versa. The weakness in the definition lies in
this notion of correspondence. How do we know when two elements
fzorrespond? The cups and saucers in a collection of cups standing
in their saucers have an obvious correspondence, but what is the
correspondence between, say, the planets and the Muses? It is
no use saying that even if there is no patent correspondence
between the planets and the Muses, we can easily establish one
for how do we know this, and, what is more important, what sorfj
o‘f gorrespondence do we allow? In defining number in terms of
similarity we have merely replaced the elusive concept of number
by the equally elusive concept of correspondence.

Number and numeral

. Some mathematicians have attempted to escape the difficulty
in defining numbers, by identifying numbers with numerals. The
nl.lmber one is identified with the numeral 1, the number two
Wl?‘:h the numeral 11, the number three with 111, and so on. But
this attempt fails as soon as one perceives that the properties of
humerals are not the properties of numbers. Numerals may be
blue or red, printed or handwritten, lost and found, but it makes
no sense to ascribe these properties to numbers, and, conversely,
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numbers may be even or odd, prime or composite but' these are
not properties of numerals. A more sophisticated version of this
attempt to define numbers in terms of numerals, makes }1umbers,
not the same thing as, but the names of the numerals; this escapes
the absurdities which arise in attempting to identify number and
numeral but it leads to the equally absurd conclusion that some
one molation is the quintessence of number. For if numbers are
the names of numerals then we must decide which numerals they
name; we cannot accept the number ten for instance as bo'.oh‘th.e
name of the roman numeral and the arabic numeral. And if it is
said that the number ten is the name of all the numerals ten then
we reach the absurd conclusion that the meaning of a number word
changes with each notational illnovaﬁion. . o
The antithesis of ‘“number” and “pumeral’’ is one Whl(}.h is
common in language, and perhaps its most familiar instance is to
be found in the pair of terms “proposition” and “senten(?e”. The
sentence is some physical representation of the proposition, but
cannot be identified with the proposition since different sentence.s
(in different languages, for instance) may express the same proposi-
tion. If, however, we attempt to say just what it is ‘the.mt the sen.tences
express we find that the concept of proposition is just as difficult
to characterise as the concept of number. It is sometimes h?ld
that the proposition is something in our minds, by eontrasju Wlt.h
the sentence, which belongs to the external world, but if 'th%s
means that a proposition is some sort of mental imag(? t-hen' it is
just another instance of the confusion of a proposition .w1th a
sentence, for whatever may be in our minds, whether it be a
thought in words, or a picture, or even some more or 1es§ amorphous
sensation, is a representation of the proposition, differing frf)m ‘the
written or spoken word only because it is not a oonu.mmlcatmn.
Tn the same way we see that the view that number is 1.ndeﬁnab1e,
being something which we know by our intuition, again confusieS
number with numeral, that is confuges number with one of its

representations.
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Arithmetic and the Game of Chess

The game of chess, as has often been observed, affords an excellent
parallel with mathematics (or, for that matter, with language
itself). To the numerals correspond the chess pieces, and to the
operations of arithmetic, the moves of the game. But the parallel
is even closer than this, for to the problem of defining number
corresponds the problem of defining the entities of the game. If
we ask ourselves the question “What is the king of chess?” we |
find precisely the same difficulties arise in trying to find an answer
which we met in our consideration of the problem of defining the
concept of number. Certainly the king of chess, whose moves the
rules of the game preseribe, is not the piece of characteristic shape
which we call the king, just as a numeral is not a number, since
any other object. a matchstick or a piece of coal, would serve as
well to play the king in any game. Instead of the question “What
is the king of chess?” let us ask ““What makes a particular piece
in the game the king piece?” Clearly it is not the shape of the
piece or its size, since either of these can be changed at will. What
constitute a piece king are its moves. That piece is king which has
the king’s moves. And the king of chess itself? The king of chess
is simply one of the parts which the pieces play in a game of chess.
just as King Lear is a part in a drama of Shakespeare’s; the actor
who plays the King is King in virtue of the part which he takes,
the sentences he speaks and the actions he malkes, (and not simply
because he is dressed as king) and the piece on the chess board
which plays the king-role in the game is the piece which makes
the king’s moves.

Here at last we find the answer to the problem of the nature
of numbers. We see, first. that for an understanding of the meaning
of numbers we must look to the ‘game’ which numbers play, that
is to arithmetic. The numbers, one, two, three, and so on, are
characters in the game of arithmetic, the pieces which play these
characters are the numerals and what makes a sign the numeral
of a particular number is the part which it plays, or as we may
say in a form of words more suitable to the context, what constitute
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a sign the sign of a particular number are the transformation rules
of the sign. It foilows, therefore, that the OBIECT OF OUR STUDY I8
"NOT NUMBER ITSELF BUT THE TRANSFORMATION RULES OF THE
NUMBER SIGNS, and in the chapters which follow we shall have
no further occasion to refer to the number concept. But just as the
rules of chess are currently formulated in terms of the entities of
chess, so that we say, for instance, the king of chess moves only
one square at a time (except in castling), instead of the completely
equivalent formulation “the piece playing the part of king (or
simply the king-piece) is moved only one square at a time (except
in castling)” so we shall continue, in purely descriptive passages,
to formulate the operations of arithmetic in terms of arithmetical
entities instead of arithmetical signs. For instance, we may speak
of “the sum of the numbers two and three” rather than confine
ourselves to the object formulation “2+43”, where + is the sign
whose role in arithmetic is what is called addition, and “2” and
3 gre numerals whose roles are those of the numbers two and
three. To put it another way, in defining the part played by a
sign like +, in arithmetic, we shall say that what we are defining
is the sum function, but the definition itself will refer only to
operations for transforming expressions which contain the sign 4-.

Number Variables

The parallel between chess and arithmetic breaks down when
we contrast the predetermined set of pieces in the game of chess
with the licence granted to arithmetic to construct numerals at
will. In this respect arithmetic more closely resembles a language
which places no limit, in principle, upon the length of its words.
A familiar notation for numerals expresses them as words spelt

with the ‘alphabet’ “0”, “1” and ““+”’; each ‘word’ has an initial

“0” followed by a succession of pairs =+ 1”’. Thus, for instance, we
* ) ¢ ¢ IEETTs 3 .

form in turn “0”, “0+1”, “04+1+1", “0+ 1+14-1”. The formation

of numerals may be fully characterised by means of two operations,
as follows. We extend the alphabet by the introduction of a new
sign, “a”, and form ‘words’ by writing either “0” or “a+1” for
“2”: for example we may form in turn, “pv, Cadl”, ‘b l4+17,
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“p4+141417, “04+14+-1+1", the last of which is a numeral.
This new sign we call a ‘numeral variable’. The rules permitting
the substitution of “xz+1” or “0” for “2” in effect allow the
substitution of any numeral for x; the object of the formulation
we have adopted is that it serves to define the concept of any
numeral and the concept of a numeral variable simultaneously.
In the sequel, not only the letter z, but other letters, too, will be
used as numeral variables.

The numeral formed by writing some numeral for “2” in “x+1”
is called the successor of that numeral. For instance, writing
“O0+1+1"for “2” in “ax-+ 1" we obtain “04- 14117, the successor
of “0+1+41”. For this reason “a-+1” is called the (sign of the)
successor function. The definite article is somewhat misleading,
however, since we may write, in place of , any other letter which
is being used as a numeral variable; in a system in which 2, y and 2
are all numeral variables, each of “a+17, “y+ 17, “2+1” is a sign
of the successor function. Nevertheless we shall talk of ¢the successor
function, the uniqueness in question being the uniqueness of the
sign which results when we write some definite numeral for the
variable, be it denoted by =, y or z.

For purposes of standardisation of notation we shall have
occasion to introduce, instead of the ‘alphabet’ “0”, “1” and “+”
for writing numerals, the ‘alphabet’ “0”, “‘S”’ in which the numerals
become “0°’, “S0”’, <S80, “S880” and so on. In this notation the
sign of the successor function is “Sz” and the transformation rules
for a numeral variable 2 are (i) Sx may be written for z, (ii) 0 may
be written for z.

Another notation in current use employs “z’”’ for the successor
function, so that the numerals are written 0%, “0'”, “0"”, “0"”
and so on.

Definition of Counting

No theory of the natural numbers is complete which does not
also take into account the part which numbers play oulside
arithmetic. It is not only a property of the number nine that it
is a square but also that it is the number of the planets, and this
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latter property is not a consequence simply of the laws of arithmetic.
According to the Frege-Russell definition of number, the number
of a collection is found by testing it for similarity with the standard
unit, pair, trio, and so on, in turn, this testing being carried out
by the process of counting, but as we have proposed a definition
of number which does not rest upon the undefined concept of a
gimilarity correspondence we cannot accept counting, in the
Frege-Russell sense, as a means of finding the number of a class,
without readmitting this undefined concept. There is, however,
an entirely different interpretation of the process of counting,
which makes counting available to us as a means of recording the
number of a collection, without transcending the limitation we
imposed upon ourselves of expressing the properties of numbers
in terms of the transformation rules of the number signs. We
start by separating two distinct stages in the process of counting.
The first of these is what we shall call “using a collection as a
numeral” which consists in overlooking the individual ‘idio-
synerasies’ of the elements of the collection and regarding them as
being all alike (but not identical) for the purpose in hand. This is
simply a (perhaps rather extreme) form of a treatment of signs
familiar in all acts of reading, writing or speaking; the letters “a”
on a printed page, for instance, have their several differences and,
subject to sufficiently close scrutiny, are as different as say the
soldiers in a platoon, but for the purposes of reading we ignore
these differences and treat the various a’s as being the same sign.
And so too, in speaking, we treat as the same a variety of slightly
different sounds. In a different context, signs which we would
accept as the same for reading purposes, are carefully distinguished,
as, for example, when we test the quality of printing. The process
of overlooking some differences, but not others, is fundamental in
language; it is the process by which we subsume objects with a
‘family likeness’ under a generic name and the process which
makes possible the use in language of universal words. Without it,
the concept of the number of a class could never have arisen. The
second stage in the process of counting consists in a transformation
from one number notation to another by means of the rules “one
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and one is two”, “two and one is three”, “three and one is four”
and so on. It is the recitation of these rules (in an abbreviated form
in which each ‘and one’ is omitted, or replaced by pointing to,
or touching, the object counted) which gives rise to the illusion
that in counting we are associating a number with each of the
elements counted, whereas we are in fact making a translation
from the notation in which the number signs are “one”, “one and
one”’, “one and one and one”, and so on, to the notation in which
the signs are “‘one”, “two”’, “three”, and so on. The true nature
of counting is perhaps most clearly brought out if we re-introduce
the older process of making a tally. Making a tally of a collection
consists in some formalised representation of the elements of the
collection, say by means of dashes on a sheet of paper, so that in
making a tally we are copying a number sign in some standard
notation — finding the number of the collection, by treating it
as a number sign and copying this sign. Thus a tally of the planets
consists in the row of dashes

111111111

If we now proceed to transform this sign by means of the trans-
formation rules 11=2, 21=3, 31=4, 41=5, 51=6, 61="17, 71=38,
81=9 we obtain in turn 111111111 =21111111=3111111=411111=
=51111=6111=711=81=9, which completes the transformation.
In counting as we teach it today. the processes of tally making
and sign transformation are carried out simultaneously, thus
avoiding the repeated copying of the ‘tail’ of the number sign in
transforming to an arabic numeral. It is important to realise that
counting does not discover the number of a collection but transforms
the mwmeral which the collection itself instances from one notation
to another. To say that any collection has a number is just to
say that any collection may be used as a number sign.

Formalisation of Counting

Counting may be formalised in a system of signs by formulating
the transformation rules of a counting operator “N”’. We represent
the objects in the collections to be counted by letters «, b, ¢, ...,
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and collections by conjunctions like @ &b, a &b & ¢; a single
object being regarded also a collection. The letter I we use as a
variable for an object, that is, a letter for which any object may
be written; the capital letter L serves as a variable for a collection
and may, in any context, be replaced by a definite collection or
by “L & I”. The numerals of the system are the signs (without x)
obtained from 7, x and the successor function x+ 1 by substitution.
Then we define
Nl=1, NL &l)=N(L)+1.
These equations suffice to determine the number of any collection.
For instance, substituting “a’” for the variable-sign “I”, in the
first, we obtain N(e)=1, and then, substituting “a” for “L”
and “D” for “I” in the second, we obtain
N(a & b)=N(a)+1

and so, N(a & b)=1-+1.

Next, substituting “e & &’ for “L” and “¢” for “I” we find

N &b &c)=N{o &b)+1=1+4+1+1,

and so on.

We observe that the definition of N(L) is by recursion, that is
to say, N(L) is not simply an abbreviation for some other expres-
gion, as, for instance, when we define 2=14-1, the sign “2” may
be replaced by ““1-+1” for which it js merely an abbreviation, but
N(L) is determined only step by step, by introducing the members
of the class to be counted one at a time (or shedding them one at
a time). We may express this by saying that for the variable L,
N(L) itself is undefind, only the result of substituting a definite
class (like ¢ & b & c) for L being defined by the recursive definition.
The recursive definition is, so to speak, a schema or mould from
which the definition (value) of N(e & b & ... & k) may be found
by substitution for any particular class ¢ &b & ... & k.

Evolution of the Concept of a Formal System

In the following chapters we shall set up arithmetic as a formal
system. The idea of a formal system is one which derives from
Euclid’s presentation of geometry, but the notion has undergone
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considerable development during the past century. Ruclid’s
intention in the “Elements” was to deduce the whole body of
geometrical knowledge of his time from a few self evident truths
(called axioms) by purely logical reasoning. Euclid did not, however,
specify the nature of ‘logical reasoning’ and the first attempt to
do so was made by George Boole, in 1847, in his Mathematical
Analysis of Logic. Boole constructed a symbolic language, in which
the ‘laws of thought’, formulated as axioms, may be studied by
mathematical techniques. In the complete development of the
notion a formal system is an assemblage of signs separated into
various categories, their usage bound by various conventions (the
axioms and transformation rules) the object of the system being
to arrange sequences of formulae (which are themselves sequences
of signs with certain specified formation rules) in certain relation-
ships to one another to form a particular pattern called proof.
A formal system may contain both mathematical and logical
signs (the distinction is an arbitrary one), and mathematical and
logical axioms; its essential feature, gua formal system, is that its
operation does not presuppose any knowledge of the significance
of the signs of the system than is given by the axioms and trans-
formation rules. The mathematical axioms are no longer “‘self
evident truths” but arbitrary initial positions in a game, and the
logical axioms express, not the “laws of thought” but arbitrary
conventions for the use of the logical signs.

In the formal system with which we shall first be concerned in
this book, the equation calculus, the only signs are signs for functions
and numeral variables, and the equality sign. There are no axioms
except the introductory equations for function signs, and there
is no appeal to ‘logic’, the operation of the system being specified
simply by the transformation rules for the mathematical signs.
It is shown that a certain branch of logic is definable in the equation
calculus and logical signs, and theorems, are introduced as conve-
nient abbreviations for certain functions and formulae. This branch
of logic is characterised by the fact that it can assert the ewistence
of a number with a given property only when the number in
question can be found by a specifiable number of trials.



